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The nature of the exchange coupling variation in an antiferromagnetic spin-1
2 system can be used to tailor its

ground-state properties. In particular, dimerized Heisenberg rings containing domain walls have localized
states that can serve as “flying spin qubits” when the domain walls are moved. We show theoretically that when
two of these rings are coupled, the movement of the domain walls leads to modulation of the effective
exchange interaction between the qubits. Appropriately chosen configurations of domain walls can give rise to
ferromagnetic effective exchange. We describe how these spin rings may be used as basic building blocks to
construct quantum spin systems whose properties are tunable by virtue of the exchange variation within the
rings.
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I. INTRODUCTION

The spin degree of freedom plays a key role in proposals
for quantum information processing in solid-state systems.1–5

Basic physical entities present in solids, such as electrons
and certain nuclei characterized by a spin quantum number
s= 1

2 , are intrinsically two-level quantum systems and there-
fore serve as natural realizations of quantum bits �qubits�.1,2

While a single s= 1
2 spin is itself a qubit, it may also be

regarded as a fundamental building block that, together with
interactions between spins, can be used to construct larger
quantum systems having properties that do not exist for the
individual constituents. In this sense, the spins and their in-
teractions may be regarded as naturally existing elements of
a quantum “toolkit” for the construction of “designer quan-
tum materials” with a variety of features.

Among the types of quantum systems that may be con-
structed are single qubits formed from multiple spins inter-
acting via Heisenberg exchange.6–11 The advantages of such
qubits include the ability to perform universal quantum com-
putation without requiring time-dependent external magnetic
fields6 as well as with Heisenberg exchange as the sole
physical interaction,7,8 where the latter approach requires qu-
bits composed of a minimum of three spins. The ground-state
doublet present in the spectra of uniform antiferromagnetic
�AFM� Heisenberg chains of an odd number of spins can be
used to define energetically stable “spin cluster qubits,”9,10

which are protected from decoherence by the presence of a
finite energy gap above the qubit states.11

In addition to the number of spins, the exchange profile
describing the set of interactions among spins may be varied.
Collections of spins with modulated exchange give rise not
only to stable qubits but also to systems capable of faithfully
transporting quantum information.12,13 In particular, it is pos-
sible to effectively construct a quantum field using a one-
dimensional dimerized AFM Heisenberg spin-1

2 chain such
that its topological excitations serve as qubits.13 Introducing
a domain wall that separates the two possible states of dimer-
ization into the exchange profile produces a topologically
stable logical qubit, whose spin density is localized at the
domain wall. Movement of the domain wall within a large
spin system allows the localized spin density to be propa-

gated over arbitrary distances. While the qubit remains en-
coded in the spin-1

2 ground-state doublet of the entire system,
the moving domain wall effectively changes the location
from which the quantum information present in the form of
nonzero spin density may be accessed, producing a “flying
spin qubit” which is stable against local disorder in the ex-
change profile. This system therefore combines the stability
properties of multispin qubits with the ability to transport the
qubits within the very spin system in which they reside.

In order for quantum information processing to be pos-
sible with flying spin qubits, pairs of these qubits in their
stationary form, which we refer to in the present work as
domain-wall qubits, must be able to interact in a manner
such that they become entangled. Entangling operations are
essential elements of the set of quantum gates required to
achieve universal quantum computation.14 In order to ex-
plore methods for entangling domain-wall qubits, mecha-
nisms by which they can be controllably coupled must first
be understood. In this goal lies the motivation for the present
work. Related work on methods for coupling qubits encoded
in AFM molecular rings15,16 has involved switching on �off�
the effective pairwise ring couplings by selectively exciting
�deexciting� one of the rings in each pair to a state lying
outside �inside� the qubit space. This scheme allows quantum
gates to be performed by applying global fields to a chain of
AFM rings alternating between two types, and qubit-qubit
couplings can be switched off despite the existence of per-
manent spin-spin couplings. More recently, the advantages
of applying this scheme to a chain of modulated AFM
spin triangles have been discussed in the context of imple-
menting quantum gates between molecular qubits17 and con-
trol over the effective coupling between molecular qubits via
chemical modification of the intermolecular link has been
demonstrated.18 A method of entangling qubits via coupling
to a uniform Heisenberg spin chain has also been proposed,19

where it was noted that the sign of the effective qubit-chain
coupling depends on the spin site within the chain to which
the qubit is coupled.

Here, we show that the exchange profiles for a pair of
coupled dimerized AFM Heisenberg rings of s= 1

2 spins con-
taining domain-wall qubits provide a means of tailoring the
effective exchange interaction between the qubits. In this
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method, the system remains within the space spanned by the
product states formed from the ground states of the rings.
Tuning of the effective exchange is achieved by varying the
positions of the domain walls within the rings. In all cases
considered in the present work, the effective qubit-qubit ex-
change is found to be isotropic. Certain configurations of
domain walls give rise to ferromagnetic �FM� effective ex-
change despite the AFM nature of the spin-spin coupling
between the rings. These features allow Heisenberg rings
containing domain-wall qubits to serve as the building
blocks of a new class of designer quantum materials, and we
explore a few examples of such systems in the present work.

We first present basic features of an analytical model for a
single AFM spin triangle containing a domain-wall qubit.
This framework is then used to determine expressions for the
effective qubit-qubit exchange as a function of the domain-
wall positions within a pair of coupled AFM spin triangles. A
direct connection between the spin-density variation within
the rings and the effective exchange between the qubits is
demonstrated. Extension of the results to larger coupled-ring
systems is illustrated through numerical calculations for a
pair of domain-wall qubits in coupled five-spin rings. Con-
structions of an effective three-qubit FM triangle, AFM rings
of nine qubits with variable dimerization and a domain wall,
and an effective spin-1 chain formed from qubits with alter-
nating FM and AFM effective exchange are then demon-
strated, using spin-triangle domain-wall qubits as the basic
building blocks in each case. Finally, a possible physical re-
alization of the spin-1 chain using quantum dots is described.

II. ANTIFERROMAGNETIC HEISENBERG SPIN
RINGS

The Hamiltonian describing a one-dimensional system of
nc spin-1

2 objects coupled by nearest-neighbor Heisenberg
�isotropic� exchange interactions is

Hnc
= �

k=1

nc

Jk�Sk · Sk+1� � � Jk�Sk · Sk+1� . �1�

Here, Sk= �Sk
x ,Sk

y ,Sk
z� is the vector operator for the kth spin

and �=1. The constants �Jk� represent the strengths of the
nearest-neighbor spin-spin-exchange interactions, whose
AFM nature is incorporated into the model by assuming Jk
�0 for all k. Periodic boundary conditions are included in
Eq. �1� by letting k�nc�k. In the absence of external mag-
netic fields, both the square of the total spin angular momen-
tum operator S2= ��Sk�2 and the total z component SZ= �Sk

z

commute with Hnc
, so that state and operator representations

can be defined for subspaces of definite SZ and/or S2.
The nature of the ground state of Hnc

depends on the form
of the exchange profile, which is defined as the set of cou-
pling constants �Jk�. To illustrate particular features of this
dependence, we consider the smallest possible closed spin
chain, which has nc=3 spins. From Eq. �1�, the Hamiltonian
is H3=�k=1

3 Jk�Sk ·Sk+1�. The full Hilbert space for this
Heisenberg spin triangle is spanned by 23=8 states and con-
sists of subspaces characterized by energy eigenstates with
fixed total spin quantum numbers S= 3

2 and S= 1
2 . The AFM

spin-spin exchange gives rise to a ground state with the mini-
mum possible total spin,9,10 which is S= 1

2 for odd nc. The
space of S= 1

2 states can be divided into two subspaces
�S ,SZ�= � 1

2 , �
1
2 �, each of which is two dimensional and de-

fines a pseudospin. We choose the particular exchange
profile13

Jk = J̃0 + J̃1 cos�2�

3
�k − 1� − �� . �2�

The first term of this parametrization describes uniform ex-

change J̃0 and the second term is a sinusoidal modulation

with an amplitude J̃1 and a phase �. Here, we choose J̃0

�0 and J̃1�0. Equation �2� represents a typical exchange
profile for the smallest possible spin system �nc=3� that can
contain a flying spin qubit. In this analytical model, a domain
wall is centered around the position in the three-spin ring
defined by the phase � and varying � corresponds to moving
the spin qubit within the ring.

The spectrum of the spin-triangle Hamiltonian H3 is de-
termined by the presence or absence of modulation in the
exchange profile given in Eq. �2�. For the case of uniform

exchange, J̃1=0, a set of eigenstates which spans the
�S ,SZ�= � 1

2 , 1
2 � subspace is

	↑�
 �
1
�3

�	001
 + e�2�i/3	010
 + e�4�i/3	100
� , �3�

where 	0
�	s= 1
2 ,sz= 1

2 
 and 	1
�	s= 1
2 ,sz=− 1

2 
 are the
single-spin basis states associated with the z component of
spin. A corresponding set of eigenstates for the �S ,SZ�= � 1

2 ,
− 1

2 � subspace is found by flipping all spins in Eq. �3�,

	↓�
 �
1
�3

�	110
 + e�2�i/3	101
 + e�4�i/3	011
� . �4�

The four states in Eqs. �3� and �4� are degenerate ground

states for J̃1=0. Introducing modulation into the exchange
profile results in a splitting of the energies of the pseudospin
states within each subspace of fixed SZ �Fig. 1�. The S= 1

2
energy eigenstates become 	↑g�
, 	↑e�
, 	↓g�
, and
	↓e�
, where 	�g�
= 1

�2
�	�+
−ei�	�−
� and 	�e�
= 1

�2
�	�+


+ei�	�−
� for �= ↑ ,↓. The sets of eigenstates for the case

J̃1�0 are therefore linear combinations of those in Eqs. �3�
and �4�, with the particular superpositions determined by the
phase of the modulation �. The degenerate ground states of
the spin triangle are 	↑g�
 and 	↓g�
, which have energy Eg

=−3�J̃0+ J̃1� /4 and are separated from the first excited states

	↑e�
 and 	↓e�
 with energy Ee=−3�J̃0− J̃1� /4 by a gap �

�Ee−Eg=3J̃1 /2. Note that both the energies Eg, Ee and the
gap � are independent of �.13 Within the ground-state sub-
space, the spin triangle can be regarded as a two-level system
and serves as a single qubit.9,10 The finite gap present for all
� serves to protect this qubit from decoherence.8,11

III. ANALYTICAL MODEL FOR EFFECTIVE EXCHANGE

We now consider a system of two coupled spin triangles
with modulated nearest-neighbor exchange interactions �Fig.

VANITA SRINIVASA AND JEREMY LEVY PHYSICAL REVIEW B 80, 024414 �2009�

024414-2



2�. The exchange within each of the triangles is assumed to
be given by the profile in Eq. �2�. The Hamiltonian for this
six-spin system can be written as H=H0+Hij� , where

H0 = �
k=1

3 ��J̃0 + J̃1 cos�2�

3
�k − 1� − �a�Ska · S�k+1�a

+ �J̃0 + J̃1 cos�2�

3
�k − 1� − �b�Skb · S�k+1�b �5�

describes the coupling within the triangles �labeled a and b�,
and Hij� =JrSia ·S jb with Jr�0 denotes the intertriangle AFM

spin-spin coupling. Figure 2 illustrates the particular cases
Hij� =H33� and Hij� =H21� . The full Hilbert space for the system
is spanned by the set of all possible product states of
individual-spin-triangle basis states. For Jr=0 �uncoupled tri-
angles�, the gap between the ground state E0=2Eg and the
first excited state E1=2Ee is E1−E0=2�. In the limit Jr��,
the coupling between the rings Hij� can be regarded as a per-
turbation relative to H0,20–22 and the pair of triangles can be
described within the subspace spanned by the product states
of the spin-triangle ground states. To simplify the notation,
we define 	↑���
= 	↑g�
 and 	↓���
= 	↓g�
. The ground-state
product basis can then be written as

�	↑��a�
	↑��b�
, 	↑��a�
	↓��b�
, 	↓��a�
	↑��b�
, 	↓��a�
	↓��b�
� .

�6�

The states in Eq. �6� are product states of the instantaneous
ground states associated with the individual triangles for the
set of domain-wall phases ��a ,�b�. In a system in which the
domain walls are in motion, choosing these states as a basis
is similar to choosing a reference frame which rotates with
the domain-wall positions. Here, we use basis �6� to analyti-
cally describe the variation in the static qubit states as a
function of �a and �b.

Within the subspace defined by states �6�, the Hamiltonian
H0 in Eq. �5� is proportional to the identity operator 1 �Ref.
10� and the full Hamiltonian can be rewritten as

H3
eff = −

3

2
�J̃0 + J̃1�1 + Jeff�Jr,�a,�b�Sa

� · Sb
�. �7�

Here, Sa
�=�k=1

3 Ska and Sb
�=�k=1

3 Skb are the total spin opera-
tors for the individual triangles. The effective exchange Jeff is
a function of the strength of the coupling between the tri-
angles Jr as well as of the domain-wall phases �a and �b.
Note that the nontrivial exchange term in Eq. �7� arises en-
tirely from Hij� and also that the exchange interaction remains
isotropic within the subspace, as was found for spin cluster
qubits.9,10 The form of Jeff�Jr ,�a ,�b� depends on the spins ia
and jb involved in the coupling between the rings Hij�
=JrSia ·S jb. For H33� =JrS3a ·S3b �Fig. 2�a��, the effective ex-
change is given by

Jeff
33�Jr,�a,�b� =

Jr

9
�1 + 2 cos �a��1 + 2 cos �b� , �8�

while for H21� =JrS2a ·S1b �Fig. 2�b��, the form of the effective
exchange is

Jeff
21�Jr,�a,�b�

=
Jr

9
�cos �a − 1 + �3 sin �a��cos �b − 1 − �3 sin �b� .

�9�

The origin of the exchange coupling variation in Eqs. �8�
and �9� is directly related to the variation in the spin density
at the sites ia and jb. We show this by deriving Eq. �7� for
Hij� =H33� . To do so, we calculate the matrix elements of
H33� in the basis given in Eq. �6�. The intertriangle interaction
term can be rewritten as H33� =JrS3a ·S3b=Jr�S3a

z S3b
z

(a)
1a

2a
3a 3b

1b

2b

rJ
bϕaϕ 33

effJ

21
effJ

3a

1a
2a

rJ
aϕ

1b

2b

3b
bϕ

(b)

FIG. 2. �Color online� Pairs of spin triangles with exchange
modulation parametrized by ��a ,�b� and coupled by antiferromag-
netic exchange Jr�0. The thicker and thinner lines drawn between
the spins within the triangles indicate the stronger and weaker cou-
pling strengths, respectively, for �a=�b=0, which occurs when the
domain walls are located at the site labeled “3” for each spin tri-
angle. �a� Intertriangle coupling H33� . �b� Intertriangle coupling H21� .
Within the ground-state product subspace, the triangle pairs in �a�
and �b� are effectively pairs of qubits coupled by exchange Jeff

33 and
Jeff

21, respectively �Eqs. �8� and �9��, as shown on the right.

E

σ + σ −
0E

0 2
E ∆
+

0 2
E ∆
−

13
2
J

∆ =
�

( )1
2

ig e ϕϕσ σ σ≡ + − −

( )1
2

ie e ϕϕσ σ σ≡ + + −

1 0J =�

1 0J ≠�
0

0
3
4
JE = −
�

FIG. 1. �Color online� Energy level diagram illustrating the re-
lationship between the energies of the pseudospin states 	��
 and
those of the states 	�g�
 and 	�e�
 for the three-spin ring with �
= ↑ ,↓. The states 	��
 are eigenstates for the case of uniform cou-

pling �J̃1=0�. Modulation of the exchange �J̃1�0� gives the eigen-
states 	�g�
 and 	�e�
, which are separated by an energy gap �.
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+ 1
2 �S3a

+ S3b
− +S3a

− S3b
+ ��, where Sk	

� =Sk	
x � iSk	

y for 	=a ,b. The
first term of this expression has only diagonal nonzero ele-
ments and the second term has only off-diagonal nonzero
elements.10 Using the fact that �↓��	�	Sk	

z 	↓��	�

=−�↑��	�	Sk	

z 	↑��	�
 and the representation defined by the
order of the states in Eq. �6�, we find

H33� → h11�
1 0 0 0

0 − 1 2 0

0 2 − 1 0

0 0 0 1
� , �10�

where h11 � Jr�↑ ��a� 	S3a
z 	↑ ��a�
�↑ ��b� 	S3b

z 	↑ ��b�
=Jr �1
+2 cos �a��1+2 cos �b� /36. Setting the matrix in Eq. �10�
equal to that for a Heisenberg exchange interaction between
two spin-1

2 objects in the standard basis �	00
 , 	01
 , 	10
 , 	11
�
gives H33� →Jeff

33�Jr ,�a ,�b�Sa
� ·Sb

�, which is the second term
in Eq. �7� for the case Hij� =H33� . Here, Jeff

33 =4h11, which
agrees with Eq. �8� and may also be written as

Jeff
33 = 4Jr�↑��a�	S3a

z 	↑��a�
�↑��b�	S3b
z 	↑��b�
 . �11�

The quantities �↑��a�	S3a
z 	↑��a�
 and �↑��b�	S3b

z 	↑��b�
 are
none other than the values of the spin densities at sites 3a
and 3b for the states 	↑��a�
 and 	↑��b�
. We therefore find
the result that the effective exchange between the spin-
triangle qubits is directly proportional to the product of the
spin densities at the sites participating in the intertriangle
spin-spin coupling.

In particular, if these two spin densities are of opposite
signs, the effective exchange is negative. With the conven-
tion chosen in the present work that positive values of the
exchange are AFM, the negative sign corresponds to FM
effective exchange. Note that this is true despite the AFM
nature of the spin-spin coupling Jr between the triangles.
Because the spin densities vary with the phases ��a ,�b� of
the domain walls within the triangles, these phases provide a
method of controlling the effective coupling between the qu-
bits. In other words, the intertriangle coupling can be tuned
via the intratriangle coupling, and in particular, FM qubit-
qubit coupling can in principle be realized with only AFM
spin-spin coupling.

As an example, the variation in the effective exchange
given by Eq. �8� for the coupled triangle pair in Fig. 2�a� is
plotted in Fig. 3�a� as a function of �a, with Jr=1 and �b

=0. This variation is independent of the values of J̃0 and J̃1.
Note that as the domain wall in ring a is moved around the
ring, the effective exchange changes from AFM to FM and
back to AFM, which reflects the changing spin density at site
3a. A maximum in the FM exchange strength occurs for
��a=� ,�b=0�, while for the domain-wall configurations
��a=2� /3,�b=0� and ��a=4� /3,�b=0�, the qubit-qubit
coupling is effectively zero. The vanishing exchange can be
understood by considering the spin density within the tri-
angles. For both of these domain-wall configurations, the
spin at site 3a belongs to a relatively strongly coupled pair
whose ground state is the S=0 singlet state 1

�2
�	01
− 	10
� of

two spins. The spin density at site 3a is therefore zero, which

results in the vanishing of the effective coupling in Eq. �11�.
Figure 3�b� shows the energies of the eight lowest states of
the coupled spin-triangle pair as a function of �a for J̃0=1,
J̃1=1, Jr=0.1, and �b=0. The effective exchange splitting is
apparent in the energies of the lowest four states, three of
which are triply degenerate and one of which is nondegen-
erate. The presence of a relatively large gap between these
lowest two energy levels and higher states for all values of
�a confirms the validity of the effective exchange approxi-
mation.

The method of modifying the spin density within a
Heisenberg ring in order to produce FM effective exchange
which is described here is closely analogous to techniques
that have been used to synthesize crystals of organic radicals
with intermolecular FM exchange,23 which involve stacking
radicals in orientations such that atoms with spin densities of
opposite sign are neighboring each other. In these systems,
the presence of the unpaired electron in a cyclic radical plays
a role similar to the domain wall in the Heisenberg spin rings
considered in the present work. In addition, the importance
of the relative orientations of a pair of stacked radicals to the

(a)

0 1 2 3 4 5 6
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0.0

0.2

0.4

0.6

0.8

1.0

AFM AFMFM

Jr b= =1 0, ϕ

Jeff
33

ϕa

(b)

� � � � � � � � � � � � � � � � � � � � �
� � � �� � � � � � � � � � � � � � � � � � � � � � � � �� �� ��� �� �� ��� �� �� �� ��� �� �� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �
� � � �� � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � �
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-3.0
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-1.0
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E

� �J J
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0 11 1
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= =

, ,
. , ϕ

FIG. 3. �Color online� �a� Effective exchange Jeff
33�Jr=1,�a ,�b

=0� given by Eq. �8� for the coupled spin-triangle pair in Fig. 2�a�,
showing the ranges of domain-wall locations �a for which the ex-
change is AFM and FM. �b� Variation in the energies for the lowest
eight states of the system in Fig. 2�a� as �a is changed from 0 to 4�

with J̃0=1, J̃1=1, Jr=0.1, and �b=0, showing the effective ex-
change splitting within the lowest two energies �four states, three of
which are triply degenerate and one of which is nondegenerate� and
a relatively large gap separating the lowest four states from higher
levels for all values of �a.
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nature of the overall intermolecular effective exchange was
shown to be related to the overlap of the atomic orbitals
between the radicals,24 with large overlap corresponding to
AFM exchange and small overlap to FM exchange. A similar
but much less sophisticated relationship for the Heisenberg
ring systems containing domain-wall qubits can be obtained
by calculating the overlap 	����a� 	���b�
	= 	cos���a
−�b� /2�	 between the ground states of the two spin triangles,
which can be regarded as orbital-like overlap by noting that
moving the domain wall in each ring corresponds to changes
within an orbital degree of freedom for each qubit.13 For
�b=0, it is seen that 	����a� 	��0�
	
 1

2 for 0��a�2� /3
and 4� /3��a�2�, which are the regions of AFM effective
exchange �Fig. 3�a�� while 	����a� 	��0�
	� 1

2 for 2� /3
��a�4� /3, which corresponds to the range over which the
exchange is FM. AFM �FM� effective exchange is therefore
seen to occur for domain-wall locations associated with
larger �smaller� orbital-like overlap values.

IV. NUMERICAL STUDIES OF EFFECTIVE EXCHANGE

The discussion of effective exchange between domain-
wall qubits has so far focused on a particular analytical
model, in which the exchange profile is given by Eq. �2�. To
illustrate the generality of the results, we consider alternative
forms of exchange profiles which give rise to domain walls
in dimerized Heisenberg rings defined by Eq. �1� with nc
=5 and periodic boundary conditions. Numerical calcula-
tions are carried out in order to determine the effective ex-
change between the qubits, assuming that they are encoded
in the ground states of the rings.

For each five-spin ring, we initially consider an exchange

profile formed from two exchange constants J̄ and J, with

0�J / J̄�1, in which there is a domain wall separating the
two possible states of dimerization. General features of spin
systems with such exchange profiles are discussed in Ref. 13.
We consider a pair of spin rings �labeled a and b�, which

each have the exchange profile �J1=J4= J̄ ,J2=J3=J5=J� and
are coupled by AFM exchange Jr�0 �Fig. 4�a��. This system
has domain walls centered at sites 3a and 3b. The ground-
state doublet of a single AFM five-spin ring has �S ,SZ�
= � 1

2 , �
1
2 �. These two states define a qubit9,10,13 and are de-

termined by numerical diagonalization of the Hamiltonian in
Eq. �1� for nc=5. The spin densities of the two ground states
are plotted as a function of site k in Fig. 4�b� and show the
spin density of the qubit localized around the domain wall at
k=3. Denoting the product basis constructed from the spin-
ring ground states by �	↑ 
a	↑ 
b , 	↑ 
a	↓ 
b , 	↓ 
a	↑ 
b , 	↓ 
a	↓ 
b�,
where ↑ refers to the SZ=+ 1

2 state and ↓ to the SZ=− 1
2 state,

we determine the effective Hamiltonian within the subspace

spanned by these states for J̄=1, J / J̄=0.2, and Jr=0.1. For
the coupling depicted in Fig. 4�a� �where both domain walls
are at the positions defined to be zero� we find the effective
Hamiltonian −3.037 1+0.096Sa ·Sb�H5

eff�0�, where Sa and
Sb are the total spin operators of rings a and b, respectively.
As was found for the coupled spin triangles and for spin
cluster qubits,9,10 the qubit-qubit exchange Hamiltonian is of
the isotropic Heisenberg form �up to a term proportional to

the identity, which simply corresponds to a uniform shift of
all energies�.

We now displace the domain wall within ring a by s sites
in the direction of increasing site index with respect to the
labeling in Fig. 4�a� by applying a discrete translation opera-
tor to 	↑ 
a and 	↓ 
a, and we calculate the effective Hamil-
tonian H5

eff�s� in the shifted product basis for each distinct
position of the domain wall. For the system in Fig. 4�a�,
there are three distinct positions, as seen by noting that the
exchange profile is periodic with a period of nc=5 sites, and
further that the sites 1a and 5a are equivalent by symmetry,
as are the sites 2a and 4a so that H5

eff�1�=H5
eff�4� and

H5
eff�2�=H5

eff�3�. We find H5
eff�s�=−3.037 1+J5

eff�s�Sa ·Sb,
where the values of J5

eff�s� are plotted in Fig. 4�c�. Note the
variation in the sign of J5

eff�s�, indicating that the qubit-qubit
exchange can be either AFM or FM, depending on the posi-
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FIG. 4. �Color online� �a� Pair of nc=5 spin rings having dimer-
ized exchange and containing domain-wall qubits. The rings are
coupled via AFM exchange Jr�0 and the coupling strength be-

tween each pair of spins within the rings is either J̄ or J, with 0

�J / J̄�1. �b� Spin density of the �S ,SZ�= � 1
2 , �

1
2 � ground states of

a single nc=5 spin ring of the type shown in �a� with J̄=1 and

J / J̄=0.2, showing localization of the qubit around the position of
the domain wall at k=3. �c� Effective exchange J5

eff for Jr=0.1 as a
function of the number of sites s by which the domain wall in ring
a shown in �a� is displaced, with s=0 corresponding to the domain
wall being located at site 3a. The value of s is defined to increase in
the direction of increasing spin index �3→4→5→1→2�.
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tion of the domain wall within the five-spin ring. As in the
case of the spin-triangle pair, the effective exchange varia-
tion results directly from the change in the spin density at
site 3a as the domain wall in ring a is displaced.

The relationship between the spin density within one of
the nc=5 spin rings and the effective exchange between the
qubits can be made more apparent by moving the domain
wall more continuously. For each ring, we therefore choose
the particular exchange profile

Jk = J̄�1 + J/J̄�/2 + �J̄�1 − J/J̄�/2��− 1�k��k − k0� , �12�

where the staggered order parameter ��k−k0�
= �1 /N��r=−n

n �−1�rtanh���k−k0�−rnc� /w� with k0= �nc+1� /2
+�k denoting the position of the domain wall and N
=�r=−n

n �−1�rtanh��nc /2−rnc� /w�. Exchange profiles of this
form can be used to produce flying spin qubits.13 For the
present case �nc=5,k0=3+�k�, we choose the parameter

values J̄=1, J / J̄=0.1, w=2, and n=50 along with Jr=0.1 for
the spin-spin coupling between the rings. The effective ex-
change is determined numerically by diagonalizing the
Hamiltonian for the coupled pair of rings within the ground-
state product subspace �	↑��ka�
	↑��kb�
 , 	↑��ka�
	↓��kb�
 ,
	↓��ka�
	↑��kb�
 , 	↓��ka�
	↓��kb�
� and calculating the en-
ergy gap between the singlet state �energy Es� and the triplet
states �energy Et� of the two qubits associated with the rings
in the above basis. The exchange splitting J5

eff��ka ,�kb=0�
=Et��ka ,�kb=0�−Es��ka ,�kb=0� is shown in Fig. 5�a� as a
function of �ka, where J5

eff�0 corresponds to AFM ex-
change and J5

eff0 to FM exchange. Note that J5
eff is periodic

for two full revolutions of the domain wall around the ring,
which arises from the fact that the staggered order parameter
� itself has a period of 2nc=10 sites. Figure 5�b� shows the
variation in the spin density at site 3a for the state 	↑��ka�

over the same range of values of �ka. We find that a relation
analogous to Eq. �11� holds:

J5
eff = 4Jr�↑��ka�	S3a

z 	↑��ka�
�↑�0�	S3b
z 	↑�0�
 . �13�

Applying Eq. �13� to the spin-density values in Fig. 5�b� with
Jr=0.1 and �↑�0�	S3b

z 	↑�0�
= �↑�0�	S3a
z 	↑�0�
 reproduces ex-

actly Fig. 5�a�. We also find that the ratio Jr /�E, where �E
denotes the gap between the qubit states and the next excited
state for a single ring, is small for all �ka values in Fig. 5, its
maximum value being �Jr /�E�max�0.153. The effective ex-
change approximation therefore remains valid for the case of
the coupled five-spin ring system.

V. CONSTRUCTION OF QUANTUM SPIN SYSTEMS BY
TAILORING OF THE EFFECTIVE EXCHANGE

We have shown that both the magnitude and the sign of
the effective exchange between the qubits encoded in the
ground states of two dimerized AFM Heisenberg rings con-
taining domain walls can be tailored by suitable modification
of the spin density within the rings. This ability to tune the
nature of the exchange allows the spin rings to serve as
building blocks for a wide variety of quantum spin systems.
Here we demonstrate some examples of systems that can be

constructed by virtue of this method. We use spin triangles of
the type discussed in Secs. II and III as the basic building
blocks in order to simplify the analytical description of the
exchange profile and the resulting spin-density variation
within each ring.

A. Ferromagnetic triangle of qubits

As a first illustration, we consider the construction of an
effective ferromagnetically coupled triangle of qubits using
only AFM spin-spin couplings. This system requires n�=3
triangles with modulated exchange. The signs of the spin
density at each site of a spin triangle having the exchange
profile in Eq. �2� with �=� /3 are indicated in Fig. 6�a�.
Here, we show the signs of the spin density for the ground
state 	↑���
 of the spin triangle, but one can equally well
consider the spin density for 	↓���
. In the latter case, all
spin-density signs would simply be reversed. According to
Eq. �11�, it is the product of the spin densities at the sites
involved in the spin-spin coupling between a pair of triangles
that determines the sign of the effective exchange, which is
independent of the pseudospin space �↑ or ↓� chosen for the
individual qubits �provided that the same space is chosen for
all of them�. One possibility for achieving FM effective ex-
change between two qubits is to couple a site labeled “2” in
one triangle to a site labeled “1” in another triangle �Fig.
6�b�� so that the product of the spin-density values at the
sites involved in each intertriangle spin-spin interaction is
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FIG. 5. �Color online� �a� Effective exchange and �b� spin-
density variation at site 3a for the state 	↑��ka�
, as a function of
domain-wall displacement �ka for a pair of coupled nc=5 spin rings
of the type shown in Fig. 4, with Jr=0.1 and with the exchange

profile for each ring given by Eq. �12�, where J̄=1, J / J̄=0.1, w
=2, and n=50.
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negative. The effective exchange for this case is given by Eq.
�9�. Since all three rings are of the type shown in Fig. 6�a�,
�a=�b=�c=� /3, and the effective exchange between each
pair of rings is Jeff

21�Jr , �
3 , �

3 �=−2Jr /9. For Jr�0, this results
in a triangle of qubits with uniform FM effective exchange.

B. Dimerized Heisenberg triangle ring with domain wall

More complex systems of exchange-coupled qubits can
also be constructed using the method discussed in the present
work. In particular, it is possible to create a dimerized AFM
Heisenberg ring of qubits containing a domain wall with spin
triangles. Here, we show how this is possible using the
domain-wall configurations and intertriangle couplings for
n�=9 triangles �Fig. 7�. The extreme case of a single isolated
qubit and strongly coupled dimers is illustrated in Fig. 7�a�.
The basic spin-triangle building block for this case is shown,
with sites of zero and positive spin density for the state
	↑���
 indicated. The coupling between each pair of triangles
a and b is given by H31� =JrS3a ·S1b, which leads to the effec-
tive exchange Hamiltonian in Eq. �7� within the space
spanned by states �6�, where

Jeff�Jr,�a,�b� = Jeff
31�Jr,�a,�b�

=
Jr

9
�1 + 2 cos �a��1 − cos �b + �3 sin �b� .

�14�

The n�=9 qubit system with dimerized effective exchange
and a domain wall is created using triangles with domain-
wall phases that alternate between �1=0+�� and �2
=2� /3−��, except where �1 appears twice in a row, which
creates a domain wall in the effective exchange profile. Fig-
ure 7�a� shows the n�=9 triangle ring for ��=0. By setting
��=� /3, uniform AFM exchange can be achieved between
the qubits. This case is depicted in Fig. 7�b�, along with the

basic spin-triangle building block and the spin-density signs
associated with the exchange profile of the triangle. We note
here that, due to the asymmetry of the exchange within the
triangle at the domain wall relative to its neighboring tri-
angles, the two effective AFM couplings between the iso-
lated qubit and each of its neighboring dimers do not in-
crease in an identical way as �� is varied from 0 to � /3.
Nevertheless, both couplings increase monotonically to their
identical values at ��=� /3.

C. Effective spin-1 chain

We now demonstrate a possible construction of an effec-
tive spin-1 AFM Heisenberg chain. In general, a spin-1 chain
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1 2
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FIG. 6. �Color online� �a� Signs of spin density for the ground
state 	↑���
 of a spin triangle having the exchange profile given in
Eq. �2� with �=� /3. �b� Possible coupling configuration for three
spin triangles of the type in �a� which gives rise to an effective
uniform FM qubit triangle �illustrated on the right�. Here, �a=�b

=�c=� /3.
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FIG. 7. �Color online� Effective AFM Heisenberg rings of n�

=9 spin-triangle qubits with variable dimerization and a domain
wall. The effective exchange between each pair of triangles is given
by Eq. �14�. �a� Basic spin-triangle building block, indicating zero
and positive spin-density values within each qubit for the state
	↑���
, and constructed ring of coupled triangles giving rise to a
single isolated qubit and strongly coupled dimers. Here, �1=0 and
�2=2� /3. �b� Basic spin-triangle building block, indicating posi-
tive and negative spin-density values within each qubit for the state
	↑���
, and constructed ring of coupled triangles giving rise to a
uniform Heisenberg ring of qubits. For this case, all domain-wall
phases are equal: �1=�2=� /3. Illustrations of the effective qubit
systems for �a� and �b� are shown within the rings of triangles.

TAILORING EFFECTIVE EXCHANGE INTERACTIONS VIA… PHYSICAL REVIEW B 80, 024414 �2009�

024414-7



can be formed from spin-1
2 objects with alternating FM and

AFM exchange, in the limit where the FM exchange tends to
infinity.25 Using the method discussed in the present work, a
spin-1 chain can be approximated by a chain of coupled tri-
angle qubits in which the domain-wall configurations pro-
duce alternating FM and AFM exchange �Fig. 8�a��. In order
to determine a suitable set of domain-wall phases ��a ,�b�,
we let the effective exchange function alternate between Jeff

33

�Eq. �8�� and Jeff
21 �Eq. �9�� and assume Jeff

33�Jr
33,�a ,�b�0

and Jeff
21�Jr

21,�b ,�a��0. Assuming all spin-spin couplings
are AFM, this leads to the conditions �1+2 cos �a��1
+2 cos �b�0 and �cos �b−1+�3 sin �b��cos �a−1
−�3 sin �a��0. A set of domain-wall phases which satisfies
these inequalities is ��a= �

3 ,�b=��, which leads to
Jeff

33�Jr
33, �

3 ,��=−2Jr
33 /9 and Jeff

21�Jr
21,� , �

3 �=4Jr
21 /9. With Jr

33

�0 and Jr
21�0, the chosen domain-wall phases produce the

desired alternating FM and AFM effective exchange. In or-
der for this system to closely approximate a spin-1 chain, one
also requires the ratio 	Jeff

33 /Jeff
21 	=Jr

33 /2Jr
21 to be large while

ensuring that both Jr
33 and Jr

21 remain much smaller than the
gap �, which is proportional to the triangle modulation am-

plitude J̃1. A schematic of the constructed system is shown in
Fig. 8�b�. Note that the variation in the spin density within

the basic triangle building blocks is of the same form as that
shown in Fig. 7�b�.

To explore the properties of the approximate spin-1 chain
constructed here, the Hamiltonian for a n�=4 triangle chain

with J̃0=10, J̃1=8, �a=� /3, �b=�, Jr
33=1, 0.05�Jr

21�0.5,
and periodic boundary conditions was diagonalized using the
Lanczos method.26 Figure 8�c� shows the gap above the
ground state, Egap, as a function of the effective exchange
ratio Jeff

21 /Jeff
33. Note that a finite energy gap above the nonde-

generate ground state is present for this spin-triangle qubit
chain for all values of Jeff

21 /Jeff
33 shown. This finding agrees

qualitatively with that expected for a spin-1 chain from
Haldane’s conjecture,27,28 which suggests that an AFM
Heisenberg integer spin chain possesses a finite gap above
the ground state. The lowest gap is well approximated by its
value obtained from diagonalizing the effective Hamiltonian

H�
eff = −

3n�

4
�J̃0 + J̃1�1 + �

m=1

n�/2

�Jeff
33�Jr

33,�a,�b�S2m−1
� · S2m

�

+ Jeff
21�Jr

21,�b,�a�S2m
� · S2m+1

� � �15�

with n�=4, where the assumed periodic boundary conditions
imply that m�n��m. The error �Fig. 8�d�� is seen to de-

FIG. 8. �Color online� Effective spin-1 chain constructed from spin-triangle qubits via tailoring of the effective exchange by domain
walls. �a� Required effective system for a chain of coupled triangles, consisting of alternating domain-wall phases �a and �b which produce
alternating FM and AFM exchange in order to approximate a spin-1 chain. �b� Schematic of one possible solution for domain-wall
configurations and intertriangle spin-spin coupling constants used to construct the effective spin-1 chain. The pairs of coupled triangles that
act effectively as spin-1 objects are indicated by rectangles. �c� Lowest energy gap Egap as a function of the effective exchange ratio Jeff

21 /Jeff
33

for a n�=4 triangle chain of the type shown in �b� with J̃0=10, J̃1=8, Jr
33=1, 0.05�Jr

21�0.5, and periodic boundary conditions. �d�
Difference �Egap between the value of the lowest energy gap for the full 12-spin system and that calculated by diagonalizing the effective
Hamiltonian in Eq. �15�, as a function of the ratio Jr

33 /Jr
21.
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crease rapidly with the increasing ratio Jr
33 /Jr

21 �correspond-
ing to more weakly coupled effective spin-1 objects�, and its
relatively small value for all values of Jr

33 /Jr
21 shown indi-

cates that the approximation of the four-triangle �12-spin�
system with AFM spin-spin couplings by four qubits coupled
via the appropriate effective exchange interactions remains
valid.

VI. PHYSICAL IMPLEMENTATION

In order to experimentally verify the effective exchange
effects derived in the present work and attempt to construct
spin systems such as those described in Sec. V, it is neces-
sary to find physical realizations of AFM Heisenberg spin
rings with the appropriate exchange profiles. Here, we de-
scribe a possible implementation of the effective spin-1 chain
described in Sec. V C which involves an array of quantum
dots, each containing a single electron. In the absence of
external magnetic fields, AFM exchange interactions be-
tween electron spins in neighboring quantum dots are
favored.29 This suggests a potential advantage of the method
discussed in the present work, since FM exchange between
multispin qubits can be achieved using only AFM spin-spin
couplings, without the additional magnetic fields that are re-
quired for FM coupling of single-electron-spin qubits in
quantum dots. Another distinction between electron-spin qu-
bits in quantum dots and domain-wall qubits arises in the
context of a material in which spin-orbit coupling is present.
Within a quantum dot array fabricated from such a material,
the movement of the domain wall required to tailor the ef-
fective exchange by translating the spin density can in prin-
ciple occur with negligible movement of the electrons con-
tained in the quantum dots. As a result, the spin density can
be transported without coupling to its spatial motion, which
is not possible for the individual electrons themselves due to
the spin-orbit interaction.

Figure 9�a� shows a configuration of spin triangles, which
is modified relative to that shown in Fig. 8�b� but retains the
alternating FM and AFM effective exchange interactions re-
quired to construct the spin-1 chain from the triangle qubits,

as can be deduced from the spin-density signs. The quantum
dot array for realizing the effective spin-1 chain is illustrated
in Fig. 9�b�. In this system, the required variation in the AFM
electron-spin-exchange strengths can be achieved via the
relative differences in the interdot separations. The creation
of precisely controlled arrays of Ge/Si quantum dots has also
been experimentally demonstrated,30 which in principle al-
lows for the implementation of spin systems with AFM spin-
spin-exchange couplings of varying strengths.

Molecular magnets provide another potential means of re-
alizing some of the systems discussed in the present
work.16,31 In these systems, which often can be described by
nearest-neighbor AFM Heisenberg exchange Hamiltonians, it
is possible to synthesize exchange interaction strengths to
desired values. Additionally, it has recently been shown31

that the coupling of a uniform external electric field to the
chiral degree of freedom that exists for the spin triangle Cu3

can modulate the exchange in a form equivalent to the ex-
change profile in Eq. �2�.

The method of tailoring effective exchange interactions
presented here may be of interest for quantum information
processing, as it allows for controllable coupling between
qubits that can additionally be converted to flying spin qubits
by moving the domain walls, allowing for high-fidelity trans-
port, and that can also be localized or delocalized by chang-
ing the dimerization strength of the exchange profile.13 One
possible scheme for controllably coupling domain-wall qu-
bits within very large dimerized AFM Heisenberg rings of
spins interacting over a relatively small region may be imag-
ined as follows: moving the qubits as far apart as possible
from the interaction region within their respective rings, and
subsequently increasing �decreasing� the dimerization
strength, results in smaller �larger� spin density in the region
of interaction. Thus, when the spin density is delocalized, the
effective coupling is “on,” while localization of the spin den-
sity effectively turns the coupling “off” due to the approxi-
mately zero spin density within the interaction region. The
possibility of carrying out quantum entangling operations
between domain-wall qubits which can give rise to universal
quantum computing is the subject of current and future
studies.

VII. CONCLUSION

We have demonstrated that the effective exchange be-
tween qubits encoded in the ground states of dimerized AFM
Heisenberg spin rings containing domain walls may be tai-
lored via the spin-spin-exchange variation within the rings.
This method is based on the principle that the effective ex-
change originates from the spin-density distributions of the
domain-wall qubits. By employing this method, we have
shown that domain-wall qubits may be controllably coupled
and that these qubits can serve as the building blocks of a
wide variety of designer quantum materials. Finally, we have
suggested a possible scheme for realizing an effective spin-1
chain based on an array of single-electron quantum dots.

FIG. 9. �Color online� Possible physical realization of effective
spin-1 chain. �a� Schematic diagram showing a coupling configura-
tion for spin triangles which gives rise to alternating FM and AFM
effective exchange. �b� Array of single-electron quantum dots for
producing exchange coupling of the form shown in �a� in order to
construct a spin-1 chain.
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